

Reg.	No.										×					•

Combined First and Second Semester B.Tech. Degree Examination, May 2015 (2013 Scheme)

13.102 : ENGINEERING PHYSICS (ABCEFHMNPRSTU)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each question carries 2 marks.

- 1. Define simple harmonic motion.
- 2. Distinguish between longitudinal and transverse waves.
- 3. What are Miller indices?
- 4. What is Meissner effect?
- 5. Write an expression for the condition of minima in the case of interference in thin films in reflected system.
- 6. What is the criterion for diffraction to happen?
- Calculate the thickness of a quarter wave plate for a wavelength of 589 nm.
 The refractive indices for ordinary and extra ordinary rays are 1.544 and 1.554 respectively.
- 8. What is meant by de-Broglie's wave-particle duality?
- 9. Define microstate and macrostate.
- 10. Explain the reconstruction process of a hologram.

PART-B

Answer one full question from each Module. Each question carries 20 marks.

Module - I

		Module – I	
11.	a)	Show that the displacement of a simple harmonic oscillator is given by $y = a \sin(\omega t - \phi)$ and explain the significance of a, ω and ϕ .	7
	b)	Derive Maxwell's equations in differential form.	7
	c)	What are forced vibrations? Give three examples of forced vibrations.	6
12.	a)	Using Maxwell's equations establish the wave equation for electric and magnetic field in free space.	8
	b)	Derive one dimensional wave differential equation.	8
	c)	What is meant by resonance ? Give examples.	4
		Module – II	
13.	a)	The mean life of meson is 2×10^{-5} seconds. Calculate mean life of meson moving with a velocity 0.8 C.	5
	b)	Explain the properties of Type I and Type II superconductors with suitable diagrams and examples.	7
	c)	Find the packing fraction of a simple cubic lattice. Also find the ratio d_{100} : d_{101} : d_{111} in a simple cubic lattice.	8
14.	a)	Write a note on :	
		i) Critical temperature	
		ii) High temperature super conductors	
		iii) BCS theory of superconductivity.	7
	b)	Define atomic packing factor. Find atomic packing factor for simple cubic, body centred cubic and face centred cubic crystals.	9
	c)	What is the length of a one metre stick moving parallel to its length when its mass is 1.5 times of its rest mass?	4

Module - III

15.	a)	Describe the construction and working of a Nicol prism.	7
	b)	Derive the grating equation.	4
	c)	Define piezo-electric effect. Describe the production of ultrasonic waves by piezo-electric method.	9
16.	a)	Derive an expression for fringe width in the case of Air-wedge using theory of thin film interference in reflected system. How do you determine the thickness of a human hair by Air-wedge method?	12
	b)	Describe the construction and working of Quarter Wave Plate.	4
	c)	Distinguish between positive and negative doubly refracting crystals.	4
		Module – IV	
17.	a)	Describe the principle, construction and working of Helium-Neon laser.	8
	b)	State and explain Heisenberg's uncertainty principle in two forms.	4
	c)	Solve the Schrödinger equation for a particle enclosed in a one dimensional rigid box of side L. Obtain its Eigen values.	8
18.	a)	Explain meta-stable state, population inversion and optical pumping with reference to ruby laser.	6
	b)	Discuss energy distribution of free electrons in metals. Derive an expression for Fermi energy.	10
	c)	An electron has speed of 500m/s with an accuracy of 0.005%. Calculate the uncertainty with which we can locate its position. $h = 6.624 \times 10^{-34} \text{Js}$, and $m = 9.1 \times 10^{-31} \text{kg}$.	4
		HOL* KANNAWWO	